\(\int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [489]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 187 \[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {(A+i B) \operatorname {AppellF1}\left (1+m,-\frac {1}{2},1,2+m,-\frac {b \tan (c+d x)}{a},-i \tan (c+d x)\right ) \tan ^{1+m}(c+d x) \sqrt {a+b \tan (c+d x)}}{2 d (1+m) \sqrt {1+\frac {b \tan (c+d x)}{a}}}+\frac {(A-i B) \operatorname {AppellF1}\left (1+m,-\frac {1}{2},1,2+m,-\frac {b \tan (c+d x)}{a},i \tan (c+d x)\right ) \tan ^{1+m}(c+d x) \sqrt {a+b \tan (c+d x)}}{2 d (1+m) \sqrt {1+\frac {b \tan (c+d x)}{a}}} \]

[Out]

1/2*(A+I*B)*AppellF1(1+m,1,-1/2,2+m,-I*tan(d*x+c),-b*tan(d*x+c)/a)*(a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^(1+m)/d/(
1+m)/(1+b*tan(d*x+c)/a)^(1/2)+1/2*(A-I*B)*AppellF1(1+m,1,-1/2,2+m,I*tan(d*x+c),-b*tan(d*x+c)/a)*(a+b*tan(d*x+c
))^(1/2)*tan(d*x+c)^(1+m)/d/(1+m)/(1+b*tan(d*x+c)/a)^(1/2)

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3684, 3683, 140, 138} \[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {(A+i B) \tan ^{m+1}(c+d x) \sqrt {a+b \tan (c+d x)} \operatorname {AppellF1}\left (m+1,-\frac {1}{2},1,m+2,-\frac {b \tan (c+d x)}{a},-i \tan (c+d x)\right )}{2 d (m+1) \sqrt {\frac {b \tan (c+d x)}{a}+1}}+\frac {(A-i B) \tan ^{m+1}(c+d x) \sqrt {a+b \tan (c+d x)} \operatorname {AppellF1}\left (m+1,-\frac {1}{2},1,m+2,-\frac {b \tan (c+d x)}{a},i \tan (c+d x)\right )}{2 d (m+1) \sqrt {\frac {b \tan (c+d x)}{a}+1}} \]

[In]

Int[Tan[c + d*x]^m*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

((A + I*B)*AppellF1[1 + m, -1/2, 1, 2 + m, -((b*Tan[c + d*x])/a), (-I)*Tan[c + d*x]]*Tan[c + d*x]^(1 + m)*Sqrt
[a + b*Tan[c + d*x]])/(2*d*(1 + m)*Sqrt[1 + (b*Tan[c + d*x])/a]) + ((A - I*B)*AppellF1[1 + m, -1/2, 1, 2 + m,
-((b*Tan[c + d*x])/a), I*Tan[c + d*x]]*Tan[c + d*x]^(1 + m)*Sqrt[a + b*Tan[c + d*x]])/(2*d*(1 + m)*Sqrt[1 + (b
*Tan[c + d*x])/a])

Rule 138

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[c^n*e^p*((b*x)^(m +
 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 140

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[c^IntPart[n]*((c +
d*x)^FracPart[n]/(1 + d*(x/c))^FracPart[n]), Int[(b*x)^m*(1 + d*(x/c))^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d
, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]

Rule 3683

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e +
 f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&  !IntegerQ
[m] &&  !IntegerQ[n] &&  !IntegersQ[2*m, 2*n] && EqQ[A^2 + B^2, 0]

Rule 3684

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&  !Integ
erQ[m] &&  !IntegerQ[n] &&  !IntegersQ[2*m, 2*n] && NeQ[A^2 + B^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} (A-i B) \int (1+i \tan (c+d x)) \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} \, dx+\frac {1}{2} (A+i B) \int (1-i \tan (c+d x)) \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} \, dx \\ & = \frac {(A-i B) \text {Subst}\left (\int \frac {x^m \sqrt {a+b x}}{1-i x} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {(A+i B) \text {Subst}\left (\int \frac {x^m \sqrt {a+b x}}{1+i x} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = \frac {\left ((A-i B) \sqrt {a+b \tan (c+d x)}\right ) \text {Subst}\left (\int \frac {x^m \sqrt {1+\frac {b x}{a}}}{1-i x} \, dx,x,\tan (c+d x)\right )}{2 d \sqrt {1+\frac {b \tan (c+d x)}{a}}}+\frac {\left ((A+i B) \sqrt {a+b \tan (c+d x)}\right ) \text {Subst}\left (\int \frac {x^m \sqrt {1+\frac {b x}{a}}}{1+i x} \, dx,x,\tan (c+d x)\right )}{2 d \sqrt {1+\frac {b \tan (c+d x)}{a}}} \\ & = \frac {(A+i B) \operatorname {AppellF1}\left (1+m,-\frac {1}{2},1,2+m,-\frac {b \tan (c+d x)}{a},-i \tan (c+d x)\right ) \tan ^{1+m}(c+d x) \sqrt {a+b \tan (c+d x)}}{2 d (1+m) \sqrt {1+\frac {b \tan (c+d x)}{a}}}+\frac {(A-i B) \operatorname {AppellF1}\left (1+m,-\frac {1}{2},1,2+m,-\frac {b \tan (c+d x)}{a},i \tan (c+d x)\right ) \tan ^{1+m}(c+d x) \sqrt {a+b \tan (c+d x)}}{2 d (1+m) \sqrt {1+\frac {b \tan (c+d x)}{a}}} \\ \end{align*}

Mathematica [F]

\[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx \]

[In]

Integrate[Tan[c + d*x]^m*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

Integrate[Tan[c + d*x]^m*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]), x]

Maple [F]

\[\int \tan \left (d x +c \right )^{m} \sqrt {a +b \tan \left (d x +c \right )}\, \left (A +B \tan \left (d x +c \right )\right )d x\]

[In]

int(tan(d*x+c)^m*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

int(tan(d*x+c)^m*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

Fricas [F]

\[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{m} \,d x } \]

[In]

integrate(tan(d*x+c)^m*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^m, x)

Sympy [F]

\[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}} \tan ^{m}{\left (c + d x \right )}\, dx \]

[In]

integrate(tan(d*x+c)**m*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*tan(c + d*x)**m, x)

Maxima [F]

\[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{m} \,d x } \]

[In]

integrate(tan(d*x+c)^m*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^m, x)

Giac [F]

\[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{m} \,d x } \]

[In]

integrate(tan(d*x+c)^m*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^m, x)

Mupad [F(-1)]

Timed out. \[ \int \tan ^m(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^m\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \]

[In]

int(tan(c + d*x)^m*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^m*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2), x)